Forschungszentrum Karlsruhe - Wissenschaftliche Berichte - FZKA 6960

Magnetically Driven Micro Ball Valve Fabricated by Multilayer Adhesive Film Bonding

Chien-Chung Fu, R. Truckenmueller, Z. Rummler, W. K. Schomburg

Abstract
A multilayer adhesive film bonding process was developed and a magnetically driven micro ball valve was designed and fabricated as a demonstrator using this new bonding method.

The new bonding process uses adhesive films as bonding mediums. This bonding method can be applied to bond polymer housings, membrane and other different materials. The Taguchi method was used to find the proper process parameters to get enough bonding strength. The deformation of punched microstructures during each process step was analyzed in a statistical way. The sealing properties were tested with nitrogen and water solution. The compatibility with the AMANDA process was demonstrated by bonding separated membranes on polymer housings.

The micro ball valve consists of three PSU and three FeNiCr layers, which are bonded together in one step with five punched adhesive films. The PSU layers were produced by hot embossing. Micro mechanical milling was employed to fabricate the molds needed. Laser cutting technology was selected to pattern FeNiCr layers demonstrating rapid prototyping. A small series production of approximately 50 micro ball valves was successfully realized in the laboratory.

The valve can operate in two modes. One is an on-off switching mode and the other is a proportional mode. In the on-off switching mode, the valve switches the outlet pressure at two distinguished levels. The maximum switchable differential pressure of this valve is 200 kPa. The switch frequency was up to 30 Hz. In the proportional mode, controlling the ball position can regulate the outlet pressure. The magnetic force of the coil balances the forces of the flow and the weight of the ball. In this mode, the valve can steer the output pressure continuously in a range between 0 to 110 kPa, when the input pressure is 200 kPa. Inclination effects caused by the gravitation force were also investigated. The valve was found to be suitable for use at all inclination angles. The average leakage was measured to be approximately 0.3% of the flow through the open valve.

Ein magnetisch gesteuertes Mikrokugelventil hergestellt durch das Verbindungsverfahren mehrschichtiger Klebfolien

Zusammenfassung
Ein Verbindungsprozess mit mehrschichtigen, klebfähigen Filmen wurde entwickelt, und ein magnetisch gesteuertes Mikrokugelventil wurde entworfen und mit diesem neuen Verbindungsprozess als Demonstrator hergestellt.

Der neue Verbindungsprozess benutzt Klebfolien als Verbindungsmedium. Diese Methode kann für das Verbinden von Gehäuse und Membranen aus Polymeren und verschiedener anderer Materialien verwendet werden. Die Taguchi Methode wurde eingesetzt, um geeignete Prozessparameter für ausreichende Verbindungstärke zu finden. Die Verformung von gestanzten Mikrostrukturen in jedem Prozessschritt wurde statistisch analysiert. Die Versiegelungseigenschaften wurden mit Stickstoff und Wasserlösungen getestet. Die Kompatibilität mit dem AMANDA Prozess wurde durch das Verbinden separater Membranen auf polymere Gehäuse demonstriert.

Das Mikrokugelventil besteht aus drei PSU und drei FeNiCr Folien, welche in einem Schritt mit fünf gestanzten Klebfolien zusammen verbunden wurden. Die PSU Folien wurden durch das Heissprägen hergestellt. Das mikromechanische Fräsen wurde für die Herstellung der Formeinsätze eingesetzt. Das Laserschneideverfahren wurde ausgewählt, um die Strukturierung von FeNiCr Folien als Rapid Prototyping zu demonstrieren. Eine Kleinserienproduktion von ca. 50 Mikrokugelventilen wurde erfolgreich im Labor realisiert.

Das Ventil kann in zwei unterschiedlichen Modi operieren. Der erste Modus ist ein on-off Umschaltmodus, der andere ein proportionaler Modus. Im on-off Modus schaltet das Ventil den Ausgangsdruck auf zwei unterschiedliche Niveaus. Der maximal schaltbare Differenzdruck von diesem Ventil beträgt 200 kPa. Die Schaltfrequenz betrug bis zu 30 Hz. Im proportionalen Modus kann der Ausgangsdruck durch die Kugelposition reguliert werden. Die magnetische Kraft von der Spule gleicht die Fluss- und Gewichtskräfte der Kugel aus. In diesem Modus kann das Ventil den Ausgangsdruck im Bereich von 0 - 100 kPa stufenlos steuern, wenn der Eingangsdruck 200 kPa beträgt. Die durch die Schwerkraft verursachten Neigungseffekte sind ebenfalls untersucht. Die Untersuchung zeigt, dass das Ventil für alle Neigungswinkel geeignet ist. Die durchschnittliche Leckage betrug ca. 0.3% der Strömung durch das offene Ventil.

VOLLTEXT

BIBLIOTHEK