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Hydrogen - metal interactions are intensively studied in the fundamental science with a
close relation to numerous technical fields. Different physical and mathematical models were
proposed in the past, which are experimentally verified at a high temperature and pressure. In the
last years, the interest increased for metals with a high hydrogen solubility as they can be used as
efficient storage devices.

Far apart seems to be the problem met in the UHV practice: obtaining the lowest residua
outgassing after applying a feasible thermal treatment. The kinetics measurement methods in UHV
are extremely sensitive and give reliable results. Anyhow, an overview of reports on outgassing rate
values from stainless steel shows a noticeable discrepancy to physical models. These still lean on
conventional solubility determination methods and on permeation measurements. A "regular
diffusion” is still often assumed to be the limiting process aso for the hydrogen outgassing rate
during the heating. It was thus generally accepted that the initial hydrogen corcentration before any
thermal treatment is high and can be substantially reduced by a long-term vacuum heating. In the
mean time, hydrogen concentration determination by nuclear methods, or by long term thermal
extraction were performed, which gave a much higher hydrogen content in stainless steels than
usually stated. The proposed explanation for this deviation may be in the deeply trapped hydrogen
that restores the kinetic data of regular permeation and these new findings.

The role of these deep states, termed also as the "residua hydrogen”, on the achievement of
very low outgassing rates, will be clearly presented by a new interpretation of our previous
experiments.

New results of extremely precise hydrogen permeation rate measurements through a
stainless steel membrane will be also presented. A regular permeation at 200°C and 250°C could be
repeated easily at an upstream hydrogen pressure of the order of 200 mbar with a good agreement
with the literature data. Contrary, the kinetics of approaching a new equilibrium slows down
substantially at a hydrogen pressure below 1x102 mbar. The membrane becomes highly
impermeable, since the permeation rate is governed by a small number of protons occupying
"regular" sites. Slow "de-trapping" is manifested in the very long transients even at 200°C and a
membrane thickness of only 0.15 mm. This process thus explains the almost constant outgassing
rate value in any redlistic experimental time, usualy observed in UHV chambers a room
temperature. These new data will be compared to the existing theoretical models in order to help
answering the question: "What is the optimal thermal treatment of stainless steels to approach the
Zero outgassing rate?’
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Theoutlineof thetalk

A brief outlook of models for hydrogen interaction with stainless
steel - thermodynamics and kinetics

 Verifying of models by three experiments

Experiment 1: two identical thin walled chambers, d=0.6 mm b
negligible fraction of hydrogen extracted, but g, low

Experiment 2: thin walled cell d=0.15 mm P permeation rate
2.2x1015 mbar | cnr? s at 55°C to the atmosphere at the upstream
Pyp = 1.7x10* mbar

Experiment 3: thinwalled cell d=0.15 mm b permeation studied
INn awide pressure and temperature range



| ntroduction

One of themain problemsin UHV and EXV practiceisto
suppress the hydrogen outgassing rate

lowest g,,; P baking at very high T?
the majority of H really expelled?



The g, Is aconsequence of a non-equilibrium state
between in the dissolved and gas phase.

dissolved phase gas phase
H + H




The existing models

TD equilibrium:

Sievertslaw: Co =Ky, exp(- ES/kBT)\/pHZ eq.

YH,® H+ Me isan endothermal reaction (Es>0).

Example1: T=1000°C, py,=1bar b C,=1.2x10"H at./cm?
Example2: T=25°C, p,,=5x10*mbar b C,, = 6.5x10* H at./cm?

The relation has never been experimentally verified at low
hydrogen pressures, since the equilibrium state dp/dt=0
had not been established during the time of the experiment.



Models for kinetics of approaching the equilibrium

1) Diffusion limited model (DLM)

* g, determined by diffusion of H atoms occupying identical
Interstitial sites
 random walk steps between sites described by diffusion equation

qC Fourier characteristic time

=t g 4
qt DN for aplate, thickness d:

Fo = d?/4D(T)
The most relevant paper that probably influenced our physical picture:
R. Calder, G. Lewin: Reduction of stainless-steel outgassing in ultra-
high vacuum, Britt. J. Appl. Phys., 18, 1459, (1967)



2) Recombination limited model (RLM)

* g, determined by recombination of H atoms on the metal surface.
o surface sites more tightly bound than interstitial bulk sites
e diffusion equation solved by second order boundary conditions

IVING: g, =K (M) o

K, (T) values very scattered and almost useless for vacuum practice
where the observed q,, values after thermal treatment are much

higher than predicted by the RLM and seems to be pressure
Independent in the observation time.

Relevant papers related to Tokamak plasma reactors:

|.Ali-Khan, K.J.Dietz, F.G.Waelbroeck, J.Nucl.Mater., 76& 77, 337 (1978)
M.A.Pick, K.Sonnenberg, J Nucl Mater, 131, 208 (1985)



3) M odels which include bulk states at deep energy levels

* kineticsdetermined by recombination on the metal surface.

e several bulk sites exist where hydrogen is more tightly bound than at
regular interstitial sites, their number could only be estimated by TD,
unknown by present experimental techniques

e unfortunately, complex mathematical treatment can not be applied
easlly in the experimental work

Relevant papers.

P.K.Foster, Nature, 4748, 399 (1960).

A. McNabb, P.K.Foster, Trans.Metall. Soc. AIME 227, 618 (1963)
P.L.Andrew, A.A.Haasz, J.Appl.Phys, 72, 1749 (1992)

A.Turnbull, R.B.Hutchings, D.H.Ferriss, Mat.Sci.Eng., A238, 317 (1997)



The experimental facts

- most papers report g, after some thermal procedure, indicating
only that My > M

- little data on precise in Situ q,,; measurements at elevated T

- no data found about kinetics close to the equilibrium in the high
vacuum range

- little data about hydrogen concentration in the wall after thermal
treatment, since its value below the detection limit

- atmospheric side was often supposed to be the source, rather than
a hydrogen sink, but no reliable data on H, partial pressure
available



Experiment 1 -part1

SS chamber, V= 12.5 |, A=4000 cm?, d=0.6 mm, including flanges etc
walls AISI 304, thinned flanges AISI 316L, gaskets and stem, Cu

by heating (150°C, 2h) P q,,(295K)@x10-*> mbar 1/(cm?s)
by heating (200°C, 72h, Fo=3 by the DL M) finished at

0oyt (473K )@x101% mbar 1/(cm>?s), (DC@x10'” atoms H/cm?)
b final g.,(295K) @1.0x1013 mbar |/(cm?s)

V. Nemanic, J.Setina, JVST A18, 1789 (2000).



d=0.6 mm, including flanges etc, walls AlSI 304, thinned flanges Al S|
316L, gaskets and stem, Cu, pinched off for the SRG

pinch-off
|




Experiment 1-part 2

After Part 1, the same material was investigated further by a long-
term thermal extraction. Three sample types prepared:

Type A: only cleaned. (By the "fusion" method LECO RH-402,
the total amount: C,@L.5 x10*® atom H/cm3.)

Type B: cleaned and annealed for 20 min at 1050°C (Fo@10) in
dry hydrogen at 1 bar. Expected value: C,=1.2x10% at. H/cm?
Type C: reference sample, cleaned and annealed in a high
vacuum furnace (p<l10>mbar) for 5.5 h at 950°C (Fo@200).

Oxide free and expected to be " hydrogen free".



Sample pretreatment greatly influenced q,, a temperature below
400°C: the initial q,, from vacuum annealed Sample C1 was 1000
times lower than from the hydrogen annealed samples B1 or B2, but it
had a little effect on the kinetics above 700°C.:

Fo DC SFo SDC
A2 3425 4.9 x10%°
Bl 110 * 483 8.9 x10%19
B2 1107 =% 234 9.6 x101°
Cl 1200 * 257 9.1 x10%°

B. Zgec, V. Nemanic, Vacuum 61, 447 (2001).
V. Nemanic, B. Zgjec, J. Setina, VST A19(1), 215 (2001)



Conclusionsfor Experiment 1

o after the preprocessing (72 h, 200°C, 3 Fo) 2 chambers

0oyt (25°C) @1.0x1013 mbar 1/(cm?s), but the released H,
was equiv. to DC@x10' atoms H/cm? and thus represented
less the 1 % of the total since C,~9" 10 at.H/cm?.....

but in 3 Fo, the wall should be "hydrogen free“ by the DLM.

The extraction of this tiny fraction of the total hydrogen
content at 200°C had essential effect on the observed
Kinetics at room temperature.



Experiment 2

SRG ball in the thimble SS cdll data:
» bellows AISI 316L
endplates A1S| 304,

» d=0.015cm

e A=460 cnv
Pinch-off e V=125 cm?
location Cu tubing to allow

pinch-off

Very low q,, achieved after smple thermal treatments
V. .Nemanic, J.Setina, VST A17, 1040 (1999).



isolating
valve

&pumps
'

sral

ball 1

pinch-offT




Preprocessing - thermal outgassing:

» 109 hoursat T=200°C b equivalent to Fo=23
* g, Measured by the pressure rise method using the SRG 1
e fina q,,(200°C)=4.5" 10-*2 mbar | cnr?s* - before cool-down

 average H concentration decrease DC=8.8x10'° at.H/cn®

assuming that both surfaces outgassed equally



25°C® 55° jump followed by 28 daysat 55°C in a ther mostat
After the pinch-off, p(H,) decreased, presumably by permesating to the
atmospheric side, where estimated p=5x10* mbar 7!
2.7x10°4

2.6x1074 -

2.5x104

= 2.2x10 ™ mbar | cm2 st

g
2.4x1074 - L

p [mbar H, eq.]

3aflc 1 85°C

time [days]



After several months of SRG measurements, the cell was cut b
pieces put in a quartz crucible within a quartz tubing b melted
by RFinvacuumbpb V.Dp b QMSanalysis




Two most interesting findings.

the calculated C at the final p,,=1.7x10* mbar should be
C=5x10*% at. H/cm?3, but in 5 melting cycles, a lot of
hydrogen was extracted: DC @7.6x10% at H/cm?

P 1) The atmospheric side may be thought as the sink for
hydrogen, not the source, as often estimated.

P 2) A negligible fraction of hydrogen participated in the
permeation process, which led in the past to the conclusion
that the membrane Is amost hydrogen free



Conclusionsfor Experiment 2

e during the preprocessing (109h, 200°C, 23Fo)
DC=8.8x10% at.H/cm?® << expected C,~10"'° at.H/cm?

The extraction of a tiny fraction of the total hydrogen
content at 200°C had again essential effect on the
observed kinetics close to the equilibrium.

e long-term pressure decrease indicated permeation from the
cell to the atmosphere, where partial p(H,) < 1.7x10“* mbar,
(probably <<) and thus not contribute a noticeable part to the
Jo.t 1N UHV chamber even during the bake out.



Comparison to the DLM and RLM clearly shows an
Inadequacy of both modelsto describe the data

- measured g, = 2.2x10% mbar | cm= st at 55°C, is
lower than gy, = 3.4x10 mbar | cm= s (by the DLM)

- oxidised surfaces could reduce the g, by aftactor of 15,
(by the RLM), which is an acceptable agreement unless....
DISCREPANCY IN THE PHYSICAL PICTURE

- both models apply Sieverts law, when C»5x10% at. H/cm?
- the released H, during the melting DC = 7.6x10'® at H/cm?
P agreat amount of H not taken into account b for athick
wall chamber, such low g, would be recorded for millennia
- What is the driving force for this low q,?




Experiment 3

An equivalent cell from Experiment 2 used as a membrane
for investigation the role of trapped hydrogen in permeation
experiment at 200°C (up to 400°C), long term DT=0.1°C.
Both sides could be made as "downstream side":

+ Operm MeasUred after setting the initial upstream pressure
from p,,=5x10 mbar up to 0.85 mbar

- downstream p(H,) measured while flushing the outer side
by H,/Ar mixture, at only one value p,,(H,)@00 mbar
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Published data for diffusivity of stainless steel and calculated
characteristic times for the cell at three temperatures, used in
the experiment, D,=0.012 cnv/s, E;=0.57 eV

permeation outgassing (=Fo)
d?/D d¥4D
T D/cméls  t,/s t,/s
200°C 1.1 108 5300 1325
250°C 4.0 108 1398 350
400°C 6.6 107 84 21
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The initial experiment, after 20 h by dp/dt=0

steady permeation q,,(200°C)=1.8x10-*2 mbar I/(cm?.s)

observed for the next 4 days
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Permeation from p,,= 0.8 mbar to the atmospheric side

Operm (200°C) @1.0x10-*mbar.l/(cre.s), for @7 days qp,,, Was approx.
65 times higher than at p,,=0.008 mbar, both values indicate "surfaces
limited permeation”; sticking coefficient of the order of s @1.5x10-.

After 7 days P hydrogen pumped b a transient was expected that
should lead again to a new equilibrium P a new permeation rate

expected to lie between the previous limits.

In what a period could it be observed?? In 20 hours?



\ I B

/ The initial permeation started in 20h

steady (¢, =1.8x10-12 mbar I/(cm?.s)
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Outgassing prevailed over the permeation for al 4 days with a slow
tendency towards dp/dt=0, final value q,,=1.5x10-t! mbar I/(cn?.s).

p / x10° mbar

Q. /mbar l/(scn?)

0 100000 200000 300000

time /s




Per meation into the cell from the atmospheric side

At p,,= 200 mbar (set by constant flows of pure Ar and H,), dp/dt
change detected fast, while in the next 20 h, steady value
approached slowly g,,(200°C) = 8.4" 10-*% mbar |/(cn.s)
After 20 h, H, flow stopped, accumulated H, pumped P a
transient expected that should lead again to a new equilibrium b it
was approached too slowly to reach it in 4 days.

Final q,,=1.5x10'* mbar I/(cn¥.s) at p,,=8x10~ mbar, while

only DC = 6.3x10'¢ at H/cnm?® released from the wall.



Hydrogen fills and detraps deep states slowly
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Temperature dependence of the per meation rate

1) after theinitial permeation at 0.008 mbar, H, pumped, cell cooled
to RT for 16 h. When heated again in 2 h, the difference of g, ,(RT)
compared to q,,(200°C) after previous long term outgassing at
200°C was low and undistinguishable from the Q4

2) Contrarily, after the 4 day outgassing at 200°C, T changed to b
250°C, q,, changed substantidly, q,,(250°C) /q,,(200°C) = 19 !!
(DLM 3.8) and decreased in three days to 1.8x10-11 mbar |/(cn®.s),

but even at the p,(250°C) @2.2° 102 mbar H, J; = Operm

3) Much higher g,,,(400°C)/q,,,(200°C) = 100 registered !!
(DLM 63) q,, depression observed, but not yet the permeation



Cell heated in 2 h to 400°C, H, pumped out, g, * q..(P), T back
to 200°C linearly in 1.5 h, q,,(200°C) = 8.2" 10-2 mbar I/(cn¥.s)
...3X higher than before the heating to 400°C!
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similarly "well outgassed cell”, T increase from 200°C to 400°C
caused a noticeable increase of q,,,(400°C) and 0| ;; = 0erpm
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The q,,, change during the increase from 200°C to 400°C and the
amount of released H, depended thus on the previous "history"

theinitial g, (200°C) = 2.7° 10-*2 mbar I/(cn.s) (after proceeding
the permeation at 200 mbar from the atmosphere) was lower than in
the second run when initial q,,(200°C)= 9.8" 10-*> mbar |/(cn¥.s),
but the amount of released hydrogen was 10 times lower than in
the first case.

0,,:(200°C) isthus not an indicator of the total hydrogen content C



Permeation to the atmospheric side at 400°C

Pressure increased to p,,(400°C) =4.7x10% mbar P
e permeation established iImmediately and observed for 12 h

o dp/dt and p correlated by the linear dependence
* |low pressure limit set by the outgassing of CO, CO,, not observed

at 200°C.



Permeation to the atmosphere
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General conclusions

Kinetics of hydrogen evolution from stainless stedl is governed

e by diffuson over the ordinary dgtes (fast process) and
recombination at the surface (relatively fast process), described by
diffusivity D, that ismeasured easily at highpand T

* by release of H from deep states (slow process), observed in long
term experiments. The complete mechanism is not known.
Thereisaso alack of data of the total C and the energy distribution
of the sites. Concentration may greatly exceed the value expressed
by the solubility.

« M.W.Ruckman, et al, IVSTA 13(4), 1994 (1995)

« V. Nemanic, B. Zgjec, J. Setina, VST A19(1), 215 (2001)



The possible application of these findings in processing for
the lowest g, at room temperature

1) the initial prolonged heating below 200°C is probably the best way
2) higher the bake out temperature, lower the g, a room temperature
not necessarily true, observed also by K. Jousten, Vacuum, 49, 359
(1998). b exciting hydrogen from deep sites into regular sites.

3) atmospheric side may by always treated as the hydrogen sink p

a vacuum furnace is a questionable investment

4) the prediction of g, by changing the wall thickness is uncertain, but
smaller the thickness, lower the q,,; (t ahd T the same).

Not verified arguments. B. C. Moore, VST A 19, 228 (2001)



Cleaning Strategies for UHV
Ron Reid

CCLRC Daresbury Laboratory, Warrington WA4 4AD, UK

RJ.Reid@dl.ac.uk

The selection of a particular cleaning process for vacuum systems for UHV service (i.e. below
10"° mbar or so) requires some thought. It may be that the use to which the system is to be put will
place particular constraints on what may or may not be permissible. In this presentation, | will
concentrate on cleaning strategies for stainless steel, athough much will be applicable to other
materials. The relative merits in producing low outgasssing surfaces of processes such as simple
detergent cleaning, solvent degreasing, electropolishing, etc., with and without baking will be
discussed as will the applicability of each type of process.



hnology Centre
m Science u

Group

Daresbury Laboratory
Varrington WA4 4AD, UK

~ X-Vat Workshop, Castle Bad Liebenzell 23-25 April 2003 10f 19



ereqw red (Base pressure)

to make a proper assessment of the
reqw rements of the application

| 'But for UHV and XHV it is highly likely that
some form of cleaning will be needed

rjr X-Vat Workshop, Castle Bad Liebenzell 23-25 April 2003 20f 19



uality of an in-vacuum process severely affected
by presence of ‘contaminant’ gas phase molecules

e ‘Contaminant’ - a contaminant in one application
may be an essential constituent of another!

rjr X-Vat Workshop, Castle Bad Liebenzell 23-25 April 2003 3of 19
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 maintain clean in-vacuum surfaces

~ e preventing target poisoning

~ « maintaining efficient optical propertiesfor em
radiation transmission

e To provide a controlled atmosphere

rjr X-Vat Workshop, Castle Bad Liebenzell 23-25 April 2003 40of 19



ASS : "55??:':BI y clean Trapped Areas
g Plant Solvent Trapping

e Handling/Risks

rjr X-Vat Workshop, Castle Bad Liebenzell 23-25 April 2003 50f 19
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verlayers (e.g. adventitious graphite)
rovide barriers
~ « Bulk diffusion

rjr X-Vat Workshop, Castle Bad Liebenzell 23-25 April 2003 70f 19
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Hydrophile

Hydrophobe

Qrigntation of hydrophillic Soil iz surrounded, lifed.
and hydrophobic snds suspesnded, and dispersed
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hemical composition of the
lic ends of the molecule, this

Saponifiers - convert animals fats into natural soaps
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Agent Examples Advantages Disadvantages Disposal
Water Cheap, readily Need de-min for cleanliness. To foul drain
available Not a strong solvent
Alcohols Ethanol, Relatively cheap and Need control — affect workers; Evaporate or controlled
methanol, iso- readily available. some poisonous; some disposal.
propanol Quite good solvents flammable; stringent safety
precautions.
Organic Acetone, ether, Good solvents, Either highly flammable or Usually evaporate
Solvents benzene evaporate easily with carcinogenic
low residue.
Chlorinated  Trichloroethyle Excellent solvents. Trike may be banned. Toxic, Strictly controlled
hydrocarbons ne (Trike™) Non-toxic. Low boiling require stringent safety
point. Low residue precautions.
Detergents Aqueous solutions, Require careful washing and To foul drain and
non toxic. Cheap and drying of components. Can dilution
readily available. leave residues.
Moderate solvents.
Alkaline Almeco™, Aqueous solutions, Can leave residues and may Requires
degreasers sodium non- toxic. Moderate  throw particulate precipitates neutralisation, then
hydroxide solvents dilution to foul drain.

-Vat Workshop, Castle Bad Liebenzell 23-25 April 2003 14 0f 19
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Hot water jet with detergent

Coarse cleaning with Chesterton
(KPC220)

Wipe off surface dirt

Surface stripping with alumina
beads

Einse in hot de-min water

Tltrasonic with trichloroethane

Tltrasonic wash in hot Triklone

Tltrasonte wash in hot P3-
Almeco 18

Treatment with hot
perchloroethylene (120°C)

Vapour Wash in hot Triklone

Finse in de-min water

Ultrasonic cleaning in hot P3-
Almeco 18 for 10 minutes.

Einse with de-min water

Dry in warm dust free air, bag
and seal.

Rinse for 15 minutes with tap
woater.

Immerse in hot alkkaline bath of
P3-Almeco 36 at 60°C

Wash in hot de-min water for 20
minutes.

Einze in de-min water

Open atr drying and cooling of
components.

Dry in warm, dust free air, bag
and seal.

-Vat Workshop, Castle Bad Liebenzell 23-25 April 2003 150f 19
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Chiorine monoxide {CIO) Qxygen molecule (O2) :
o ClO+ O =.Cl+0, ;
 Cl+03=CIO+0; |
|

Reclassification of 1,1,2-
Trichloroethylene (Trike™)

Improved Health and Safety regulations

ir X-Vat Workshop, Castle Bad Liebenzell 23-25 April 2003 16 of 19



Accelerator Science and Technology Centre
Vacuum Science Group

X-Vat Workshop, Castle Bad Liebenzell 23-25 April 2003 17 of 19



fr X-Vat Workshop, Castle Bad Liebenzell 23-25 April 2003 18 of 19



X-Vat Workshop, Castle Bad Liebenzell 23-25 April 2003 190of 19




Road Map to Extreme High Vacuum*
Ganapati Rao Myneni
SRF Institute, Jefferson Lab, Newport News, Virginia 23606, USA

rao@jlab.org

Ultimate pressure of a well-designed vacuum system very much depends on pretreatments,
processing and the procedures [1,2]. Until now much attention has been paid in minimizing
hydrogen outgassing from the chamber material. However, procedures and processing deserves
further scrutiny than hitherto given so far. For reducing the gas load, high sensitivity helium leak
detection techniques with sensitivities better than 1x 102 Torr I/sec need to used. Vacuum
measurement instrumentation induced effects need to be improved in order to obtain accurate
pressure measurements. In this presentation clean assembly procedures, metal sponges for
cryosorption pumping of hydrogen to extreme high vacuum, low cost surface diffusion barriers for
reducing the hydrogen gas load, cascade pumping, sensitive helium leak detection techniques and
the use of modified extractor and residual gas analyzers will be discussed.

1. Bills, D.G., “Ultimate Pressure Limitations’, J. Vac. Sci. Technol. 6, 166 (1969).

2. Véardi, P. F., “Effect of Pretrestment on the Degassing of Materials’, Trans. 8" AVS Vac. Symp.
(Pergamon Press, New Y ork, 1962) pp 73-77.

*This work was supported by U.S. Department of Energy Contract No. DE-AC05-84ER40150
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— Extreme High Vacuum ~

INTRODUCTION

® AVS defines XHYV as pressure below 7.5 X 10-13 Torr

® Hydrogen is the most dominant (~90 %) residual gas in the UHV/XHV
systems

® Okxides of Carbon and CxHXx are the next predominant species

® Surface Diffusion Barriers (pretreatments), processing and procedures
are likely to help to minimize these residual gas species

® High sensitivity helium leak detection techniques (better than 1.0 X 10-12
Torr liter/sec) are essential to minimize external leaks

® Cryosorption metal sponges, cascade pumping and modified extractor
and RGA’s are reviewed
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CEBAYF Polarized Electron Guns
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Polarized Gun NEG Arra
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— RGA Spectra of Gun#3

Stutzman

Atomic Mass Units
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— Polarized Gun Pressure ~

Extractor Gauge Pressure vs. Time: 2/18/03 - 2/24/03
corrected with 2.7 factor for Hydrogen calibration
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~— UHV Gauge Calibration System Schematic ~
Test Equipment Setup

High Vacuum
i Test Chamber
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~— UHV Gauge Calibration System
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~— Unbaked System RGA Spectra
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~— Baked System RGA Spectra
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— RGA Spectra with Extractor On
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— RGA Spectra with Extractor Off
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— High Pressure DI 0 Wate or Steam Cleaning —
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— UHY Particulate Counter
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— Nanofilter Installation Scheme ~
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— Nanofilter
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~— Nanofilter Evaluation Set up ~

PRESSURE REGULATOR AND
SHUT OFF VALVE
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— Nanofilter Particulate Retention
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— Outgassing Measurements , ~
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— Outgassing Rates for Three Chambers

TABLE 2. Measured Outgassing Rates

Chamber Material

304 Stainless Steel

316L Stainless Steel

6061-T6 Aluminum

F N NN

Orifice Method
(Torr:l/s:cm?)

0.97x10°12

1.3x10°12

1.1x10-12

Rate of Rise Method
(Torr:l/s:cm?)

1.1x1012 (70 hours)

1.2x10°'2 (70 hours)

1.1x1012 (70 hours)

J
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— Ion Pump Backed Turbo Pump

Block Diagram of an lon Pump Backed
Turbo Pump System
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— Ion Pump Backed Turbo

—_—
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— BeCu & Silica Coated Chambers
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— Pump down with Coatings
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— Silica coating & nanofilter

Fig. 4. Pumpdown comparison of silico steel chamber with nano

filter
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~— High Sensitivity He Leak Detector
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— Extreme Sensitivity Leak Detector ~
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~— Special RGA for H, Linearity
RGA Hydrogen Linearity

Partial Pressure vs Extractor Gauge
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~— Special RGA He Linearity

RGA Helium Linearity

Partial Pressure vs Extractor Gauge
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~— Special RGA Tailing Contribution

Tailing Contribution Measurement
H, Pressure @ 1.0 x 10° Torr
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~— Back streaming of Helium through turbo pump
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— Cfllibrated leak

A 1x10-12 atm cc s-! Calibrated Leak Opened and Closed to the Leak Detector
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— Helium Accumulation Technique
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— Adsorption — Desorption Cycle ~
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— Unique Cryosorp‘ltion Setup ~
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— Helium Isotherms ~

Practical He adsorption isotherms @ 4.5 K
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— Hydrogen Isotherms

Practical

H, adsorption

Isotherms @ 4.3 K
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— Calculated H, Isotherms for stainless steel ~
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~— Calculated H, Isotherms for Metal Sponge ~
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Fig. 2 Calculation hydrogen adsorption isotherms on anodized aluminum
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— Helium Calibration 1 ~

Calibration of cold extractor gauge
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— Helium calibration 2
CALIBRATION OF THE EXTRACTOR GAUGE

The quantity of He introduced in to the system during the experiment
=3.76 x 10% atm cc

The amount of He estimated from the extractor gauge and RGA readings
= 3.53 x 10® atm cc

With thermal transpiration correction the RGA He partial pressure value at room
temperature translates to 1.05 x 108 torr at 11 K

This value is in good agreement with the cold extractor gauge reading

{corrected for the temperature correction ~ (T/294) ~ (11/294) } = 1.0 x 108 torr
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— Extractor Gauge Calibration with H,
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— Extractor Gaqg?
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— Cold and RT Extractor Gauges

Comparison of cold & RT extractor gauges

/

= | ! i
10° -
z 10 £
L O
= Al ¥ y]
E. =
= | =
~_ 8 9
o 107 L 4t o
3 § 10" ©
N | 8
© Cold extractor gauge ~—
é‘ ? RT extractor gauge 3 N
F 10 i WE
& 107 | -
A = | 4 4.8° ®
= _ >'I
- =
- =T %!
12 g

10 7

E Tyt H

0 2 3 4

-2 x10"
H, molecules cm
Foxg e
07 Waﬂ/ %af'f G. Myneni April 18,2003
ot M

Thomas Jefferson National Accelerator Facility
Institute for SRF Science and Technology

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy



— Extractor Gauge Calibration with Hydrogen ~

HYDROGEN VAPOUR PRESSURE MEASUREMENT
WITH COLD AND RT EXTRACTOR GAUGES

He bath pressure ~ 812 torr and the corresponding Temperature ~ 4.25 K
Posiouixmen = 139 X 10 forr
PCOLDGAUGE =1.48 X 10'6 torr

PRTGAUGE = 132 X 10-6 tOI‘I’

PN R -/
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Modified Extractor Gauge with Spindt Field Emitter
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— Conclusions ~

Pretreatments, Processing and Procedures are Critical for Achieving
XHV

High Sensitivity He Leak Detection is Crucial for Minimizing External
Leaks

Virtual Leaks Could be a Major Headache & Deserves Careful
Attention

Cryosorption Pumping will Undoubtedly Produce XHV
Cascade Pumping Should be Explored

XHYV Instrumentation Development i1s Paramount for Success
We are Open for Collaborations
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