Gyrotron Development in EU for Present
Fusion Experiments
and for ITER
M. Thumm1a,2,
S. Alberti3, A. Arnold2, D. Bariou4, G. Dammertz1a,
C. Darbos5, O. Dumbrajs6, G. Gantenbein7,
V. Erckmann8, E. Giguet4, R. Heidinger1b,
J.-P. Hogge3, S. Illy1a, J. Jin1a, W. Kasparek7,
C. Liévin4, R. Magne5, G. Michel8,
B. Piosczyk1a, O. Prinz1a, T. Rzesnicki1a,
M.Q. Tran3, X. Yang1a, I. Yovchev3
1Forschungszentrum
Karlsruhe, Association EURATOM-FZK, 1aIHM, 1bIMF-I
Postfach
3640, D-76021 Karlsruhe, Germany. e-mail: manfred.thumm@ihm.fzk.de
2Universität Karlsruhe, IHE, Kaiserstr. 12, D-76128
Karlsruhe
3Centre de Recherches en Physique des Plasmas, Association EURATOM - Confédération Suisse, EPFL Ecublens,
CH-1015 Lausanne, Switzerland
4Thales Electron Devices, 2 Rue
de Latécoère, F-78141 Vélizy-Villacoublay, France
5Association EURATOM - CEA,
CEA/DSM/DRFC, Centre de Cadarache, 13108 Saint-Paul-lez-Durance, France
6Helsinki
University of Technology, Association EURATOM - TEKES, FIN-02150 Espoo, Finland
7Institut für Plasmaforschung, Universität Stuttgart,
Paffenwaldring 31, D-70569 Stuttgart, Germany
8Max-Planck-Institut für Plasmaphysisk,
Teilinstitut Greifswald, Association EURATOM - IPP, Wendelsteinstr. 1,
D-17491, Greifswald, Germany
Abstract
The long term
strategy of the EU in the field of gyrotrons for magnetic confinement fusion
plasma applications is based on two approaches: an R&D in laboratories to
develop advanced concepts and industrial development of state-of-the-art tubes
for use in present experiments like TCV, Tore Supra (118 GHz,
0.5 MW, CW) and W7-X (140 GHz, 1 MW, CW). The results from these two
approaches are then applied to the development of a coaxial-cavity gyrotron
operating at 170 GHz and delivering 2 MW-CW for the electron cyclotron wave
system of ITER. The paper will recall the main achievements of this program and
will outline the present status of the 170 GHz gyrotron development. The main
design characteristics of these EU tubes are summarized in the following Table.
Frequency |
118 GHz |
140 GHz |
170 GHz |
Cavity mode |
TE22,6 |
TE28,8 |
TE34,19 coaxial cavity |
Power,
Pulse length |
0.5
MW, 5 s / 0.4 MW, 600 s |
1
MW, CW (1800 s) |
2
MW, CW (3600 s) |
Electronic
efficiency |
33% |
35% |
30% |
Electrical
efficiency |
28% |
48% |
45% |
Magnetron
injection gun |
Triode |
Diode |
Diode |
Current
density at cathode |
1.6
A/cm2 |
2.5
A/cm2 |
4.2
A/cm2 |
Electron
beam radius at cavity |
9.6
mm |
10.1
mm |
10.0
mm |
Beam thickness at cavity |
0.2
mm |
0.2
mm |
0.2
mm |
Electron
beam energy |
81.5
kV |
81
kV |
90
kV |
Electron
beam current |
22A |
40
A |
75A |
Velocity
ratio a |
1.3
|
1.3 |
1.3 |
Collector
depression voltage |
- |
27-30
kV |
35
kV |
Cavity
heat load (Ideal Cu, s
=5.9 107 S/m) |
<
1kW/cm2 |
<
1 kW/cm2 |
1kW/cm2 |
Window |
Sapphire
at LN2 temperature |
CVD
diamond |
CVD
diamond |
Gaussian output |
95.8% |
98.8% |
96% |
Waist of output beam |
20.4 mm |
22
mm |
20.4 mm |
Collector
magnetic field |
DC
+ AC field (2 coils) |
UC
field (1 coil) |
UC field (1 coil) |
The record
pulse length of the 118 GHz tube is 110 s with an average power of 300 kW. The
140 GHz gyrotron delivered an output power of 970 kW (efficiency: 44% with
single-stage depressed collector) for a pulse length of 11.7 s, and 890 kW
(42%) for 180 s (limit of the HV power supply at FZK). At reduced electron beam
current (30 A), the pulse length could be increased to 939 s at 539 kW
(506 MJ). For this case the limit was given by the increase of the internal
pressure causing the interlock to switch off the gyrotron; at even more reduced
electron beam current and lower output power of 257 kW a pulse length of 1300 s
could be achieved. First short pulse (1 ms) experiments with the pre-prototype
of the 170 GHz coaxial-cavity gyrotron gave 1.15 MW output power with
20% efficiency without collector depression.