Gyrotron Development in EU for Present Fusion Experiments

and for ITER

 

M. Thumm1a,2, S. Alberti3, A. Arnold2, D. Bariou4, G. Dammertz1a, C. Darbos5, O. Dumbrajs6, G. Gantenbein7, V. Erckmann8, E. Giguet4, R. Heidinger1b, J.-P. Hogge3, S. Illy1a, J. Jin1a, W. Kasparek7, C. Liévin4, R. Magne5, G. Michel8, B. Piosczyk1a, O. Prinz1a, T. Rzesnicki1a, M.Q. Tran3, X. Yang1a, I. Yovchev3

 

1Forschungszentrum Karlsruhe, Association EURATOM-FZK, 1aIHM, 1bIMF-I

  Postfach 3640, D-76021 Karlsruhe, Germany. e-mail: manfred.thumm@ihm.fzk.de

2Universität Karlsruhe, IHE, Kaiserstr. 12, D-76128 Karlsruhe

3Centre de Recherches en Physique des Plasmas, Association EURATOM - Confédération Suisse, EPFL Ecublens,

  CH-1015 Lausanne, Switzerland

4Thales Electron Devices, 2 Rue de Latécoère, F-78141 Vélizy-Villacoublay, France

5Association EURATOM - CEA, CEA/DSM/DRFC, Centre de Cadarache, 13108 Saint-Paul-lez-Durance, France

6Helsinki University of Technology, Association EURATOM - TEKES, FIN-02150 Espoo, Finland

7Institut für Plasmaforschung, Universität Stuttgart, Paffenwaldring 31, D-70569 Stuttgart, Germany

8Max-Planck-Institut für Plasmaphysisk, Teilinstitut Greifswald, Association EURATOM - IPP, Wendelsteinstr. 1,

  D-17491, Greifswald, Germany

 

Abstract

The long term strategy of the EU in the field of gyrotrons for magnetic confinement fusion plasma applications is based on two approaches: an R&D in laboratories to develop advanced concepts and industrial development of state-of-the-art tubes for use in present experiments like TCV, Tore Supra  (118 GHz, 0.5 MW, CW) and W7-X (140 GHz, 1 MW, CW). The results from these two approaches are then applied to the development of a coaxial-cavity gyrotron operating at 170 GHz and delivering 2 MW-CW for the electron cyclotron wave system of ITER. The paper will recall the main achievements of this program and will outline the present status of the 170 GHz gyrotron development. The main design characteristics of these EU tubes are summarized in the following Table.

Frequency

118 GHz

140 GHz

170 GHz

Cavity mode

TE22,6

TE28,8

TE34,19 coaxial cavity

Power, Pulse length

0.5 MW, 5 s / 0.4 MW, 600 s

1 MW, CW (1800 s)

2 MW, CW (3600 s)

Electronic efficiency

33%

35%

30%

Electrical efficiency

28%

48%

45%

Magnetron injection gun

Triode

Diode

Diode

Current density at cathode

1.6 A/cm2

2.5 A/cm2

4.2 A/cm2

Electron beam radius at cavity

9.6 mm

10.1 mm

10.0 mm

Beam thickness at cavity

0.2 mm

0.2 mm

0.2 mm

Electron beam energy

81.5 kV

81 kV

90 kV

Electron beam current

22A

40 A

75A

Velocity ratio a

1.3

1.3

1.3

Collector depression voltage

-

27-30 kV

35 kV

Cavity heat load (Ideal Cu, s =5.9 107 S/m)

< 1kW/cm2

< 1 kW/cm2

1kW/cm2

Window

Sapphire at LN2 temperature

CVD diamond

CVD diamond

Gaussian output

95.8%

98.8%

96%

Waist of output beam

20.4 mm

22 mm

20.4 mm

Collector magnetic field

DC + AC field (2 coils)

UC field (1 coil)

UC field (1 coil)

The record pulse length of the 118 GHz tube is 110 s with an average power of 300 kW. The 140 GHz gyrotron delivered an output power of 970 kW (efficiency: 44% with single-stage depressed collector) for a pulse length of 11.7 s, and 890 kW (42%) for 180 s (limit of the HV power supply at FZK). At reduced electron beam current (30 A), the pulse length could be increased to 939 s at 539 kW (506 MJ). For this case the limit was given by the increase of the internal pressure causing the interlock to switch off the gyrotron; at even more reduced electron beam current and lower output power of 257 kW a pulse length of 1300 s could be achieved. First short pulse (1 ms) experiments with the pre-prototype of the 170 GHz coaxial-cavity gyrotron gave 1.15 MW output power with 20% efficiency without collector depression.