Some time ago a dependence of the resistive superconducting transition temperature on the current direction in UNi₂Al₃ thin films was observed. Although a qualitative explanation can be given, fundamental questions about this phenomenon are still open, which motivated more detailed studies.

Morphological investigations by AFM and STM seem to rule out a growth mechanism induced origin. By using a specially designed photomask we were able to measure the transition down to current densities of 0.1 A/cm² and observed no vanishing of the difference in T_c . However, the magnitude of the splitting of the sc transition varies from sample to sample without any correlation to the defect density as determined by the residual resistance ratio. V(I) characteristics in the superconducting state were measured at various magnetic fields, indicating anisotropic pinning. For the current direction I||c a thermally activated flux flow region could be identified.

Additional measurements with higher current densities prove that the observations in the relevant range are not generated by heating effects. The shift in T_c as a function of current density agrees well with the expectation for pairbreaking critical current from Ginzburg-Landau theory.

TT 20.6 Wed 14:00 Poster A

We report on zero-field muon spin rotation (μ SR) measurements on single crystals of the cubic heavy-fermion compound CeIn_{3-x}Sn_x. CeIn₃ orders antiferromagnetically below $T_{\rm N} = 10.2$ K. Substituting Sn for In suppresses the magnetic order until $T_{\rm N}=0$ at a critical concentration $x_{\rm c} = 0.67$ [1]. For x < 0.2 the specific heat C exhibits the typical λ shaped anomaly at $T_{\rm N}$, whereas for $x > 0.2 \ C$ shows a broad maximum in the vicinity of the phase transition, which is taken as a sign for a change in the magnetic structure [2]. So far it has not been accomplished to detect magnetic intensity by means of neutron scattering in this region [3]. In contrast, μ SR with its sensitivity to small local magnetic fields in the sample gives the opportunity to probe if magnetic order is present for x > 0 at all. All CeIn_{3-x}Sn_x samples investigated (x = 0; 0.2; 0.4; 0.55) show a Kubo-Toyabe shaped μ SR signal with high depolarisation below $T_{\rm N}$ and very weak damping above. This is interpreted as the first detection of a clear signature of magnetic order in $\operatorname{CeIn}_{3-x}\operatorname{Sn}_{x}$ for x > 0.

T. Rus et al., Physica B, **359-361**, 62 (2005);
P. Pedrazzini et al., Eur. Phys. J. B, **38**, 445 (2004);
O.Stockert et al., unpublished

TT 20.7 Wed 14:00 Poster A

Deposition of CeCoIn₅ thin films by co-sputtering and evaporation — •JOCHEN GEERK¹, ALEXANDER ZAITSEV¹, RAINER FROMKNECHT¹, ANDRE BECK¹, and HILBERT V. LÖHNEYSEN^{1,2} — ¹Forschungszentrum Karlsruhe, Institut für Festkörperphysik, P.O.B. 3640, D-76021 Karlsruhe, Germany — ²Physikalisches Institut, Universität Karlsruhe

Thin films of the heavy fermion superconductor CeCoIn₅ were prepared on sapphire substrates with different orientations by combining sputtering (Ce and Co) and evaporation (In). The sputter targets of Ce and Co were arranged in a face-to-face geometry with a magnetic field applied perpendicular to the target surface thus providing an oscillatory movement of the secondary electrons between the targets the latter acting as electric mirrors. Indium was evaporated from a BN oven. In the course of our studies the composition of the films, controlled by RBS and EDX, was varied between \pm 30 % for the three elements and the growth temperature ranged from 500 to 750 ° C. The films obtained so far showed transition temperatures between 1.5 and 2.0 K and the characteristic maximum in resistivity near 40 K.

TT 20.8 Wed 14:00 Poster A

High pressure resistivity studies on $YbIr_2Si_2 - \bullet$ MONICA MACOVEI¹, MICHAEL NICKLAS¹, CORNELIUS KRELLNER¹, ZAKIR HOSSAIN², CHRISTOPH GEIBEL¹, and FRANK STEGLICH¹ - ¹Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01069 Dresden, Germany - ²Departament of Physics, Indian Institute of Technology, Kampur 208016, India

We investigated the high pressure phase diagram on high-quality single crystals of YbIr₂Si₂. Electrical resistivity, ρ , was measured in the pressure range up to 10 GPa and for temperature 0.05 K < T < 300 K. Ambient pressure specific heat and resistivity studies confirmed a Fermi liquid ground state below ~ 200 mK [1]. The Fermi liquid ground state is persisting at low pressure p < 2 GPa. However, with further increasing pressure the low-temperature dependence of the resistivity changes from a T^2 dependence to $\rho = \rho_0 + AT^n$ with n < 2, indicating non-Fermi liquid behavior. By applying a magnetic field the Fermi liquid ground state is stabilized again. For p > 7 GPa magnetic order is developing marked by a kink in resistivity similar like in other Yb based heavy fermion compounds, e.g. YbRh₂Si₂, YbCu₂Si₂ and YbNi₂Ge₂.

[1] Z.Hossain et al. Phys. Rev. B 72, 094411 (2005).

TT 20.9 Wed 14:00 Poster A YbNi₂Si₃: a new Yb based intermetallic compound — ALEXANDER COSCEEV¹, MARC UHLARZ¹, THOMAS WOLF², PETER ADELMANN², •KAI GRUBE², PETER SCHWEISS², GEORG ROTH³, RAINER FROMKNECHT², CHRISTOPH SÜRGERS¹, and HILBERT V. LÖHNEYSEN^{1,2} — ¹Physikalisches Institut, Universität Karlsruhe, Germany — ²Forschungszentrum Karlsruhe, Institut für Festkörperphysik, Germany — ³Institut für Kristallographie, RWTH Aachen, Germany

We have synthesized a new intermetallic compound YbNi₂Si₃ which crystallizes in the space group *Immm* with the metric a = 3.860Å, b = 3.862Å, and c = 24.068Å. Single crystals have been grown from Sn flux in a closed SiO₂ glass ampoule. Clean free-standing crystals could be obtained after dissolving the solid flux with liquid gallium and cleaning with a solution of iodine in dimethyl formamide. The magnetic dc susceptibility was measured parallel and perpendicular to the c axis. We find a rather strong anisotropy of the Curie-Weiss-like susceptibility down to 2.3 K. Measurements of the specific heat will be reported as well.

TT 20.10 Wed 14:00 Poster A High-field ESR on the Kondo-system $YbRh_2Si_2 - \bullet UWE$ SCHAUFUSS¹, V. KATAEV¹, B. BÜCHNER¹, J. SICHELSCHMIDT², C. KRELLNER², C. GEIBEL², and F. STEGLICH² - ¹Leibniz Institute for Solid State and Materials Research IFW Dresden - ²Max Planck Institute for Chemical Physics of Solids, Dresden

YbRh₂Si₂ is a Kondo–system with a Kondo temperature $T_K \sim 25$ K [1] It is located very close to a quantum critical point related to a very weak AFM order below $T_N = 65 \,\mathrm{mK}$ and a critical magnetic field of $B_C = 0.06 \,\mathrm{T}$ at ambient pressure. Surprisingly an ESR signal typical of a local Yb³⁺ spin has been observed below T_K at fields $B \leq 0.7\,\mathrm{T}$ [2] . The occurrence of the ESR signal is unexpected because at $T \ll T_K$ the Yb³⁺ moments should be screened. In order to obtain a deeper insight in this unusual behaviour we have performed ESR measurements on single crystals of YbRh₂Si₂ at much higher fields (5 to $7.5 \,\mathrm{T}$) at temperatures from 3 to $25 \,\mathrm{K}$, i.e. in the region where one expects a crossover from a Non-Fermi liquid(NFL) to a Fermi-liquid (FL) phase [3] . We observe a strongly anisotropic signal which can be assigned to Yb^{3+} moments. The signal exhibits a pronounced dependence on temperature and the magnetic field. We discuss the puzzling controversy between the observation of ESR which shows properties characteristic of a local $\rm Yb^{3+}$ moment and the Kondo state of YbRh₂Si₂.

- 1 O. Trovarelli et al.: Phys. Rev. Lett. 85, 626 (2000)
- 2 J. Sichelschmidt et al.: Phys. Rev. Lett. 91, 156 401 (2003)
- 3 K. Ishida et al.: Phys. Rev. Lett. 89, 107 202 (2002)

TT 20.11 Wed 14:00 Poster A Magnetotransport across the field-induced quantum phase transition in CeCu_{5.8}Au_{0.2} — •MARC UHLARZ¹, MORITZ RÖGER¹, TIHOMIR TOMANIC¹, and HILBERT V. LÖHNEYSEN^{1,2} — ¹Physikalisches Institut, Universität Karlsruhe (TH), D-76128 Karlsruhe — ²Forschungszentrum Karlsruhe, Institut für Festkörperphysik, D-76021 Karlsruhe

We report on magnetoresistivity and Hall effect of CeCu_{0.58}Au_{0.2}, magnetic field *B* applied along the hard direction (*b* axis in orthorhombic notation) and current *I* along the *a* axis. At B = 0, CeCu_{0.58}Au_{0.2} orders antiferromagnetically below $T_{\rm N} = 0.25$ K [1]. As observed previously [1], the longitudinal electrical resistivity $\rho_{xx}(T)$ rises towards lower *T* below $T_{\rm N}$ for current directions containing a component of the magnetic ordering vector $\mathbf{Q} = (0.625, 0, 0.275)$. With increasing *B*, the rise of $\rho_{xx}(T)$ becomes smaller and $T_{\rm N}$ shifts to lower *T*, vanishing at $B_c = 3.6$ T. Likewise, the field derivative of the transverse resistivity $d\rho_{xy}/dB$ (independent of *B* at high temperatures) becomes