

Mikrostruktur und mechanische Eigenschaften von freistehenden metastabilen ZrO₂ - Al₂O₃ Materialien durch Plasmaspritzen

J. Suffner¹, H. Sieger¹, H. Rösner², H. Hahn^{1,2}, S. Dosta³, I.G. Cano³, J.M. Guilemany³

1 Gemeinschaftslabor Nanomaterialien, FZ Karlsruhe . TU Darmstadt

2 Institut für Nanotechnologie, FZ Karlsruhe

3 Thermal Spray Center, Universitat de Barcelona

Einleitung und Prozess:

"Atmosphärisches Plasmasprayen (APS) als mögliches Verfahren zur endformnahen Herstellung von nanokristallinen Materialien^{[1}

["] Quenchen der aufgeschmolzenen Partikel durch Kühlung mit flüssigem N₂ zur Herstellung metastabiler Phasen

Materialstärke der freistehenden Materialien > 500µm

30–40 1/min Ar 10-15 l/min H₂ Intensity 600A

Stand off distance 120 mm

Materialien:

kristallinen Pulvern

- $^{\prime\prime}$ (ZrO_2 . 8 wt.% Y_2O_3) . 20 wt.% Al_2O_3 (YSZ20A)
- "ZrO₂. 60 wt.% Al₂O₃ (Z60A)

zur Untersuchung der Alterung des metastabilen Zustandes (TT)

Z60A

YS720A

ZrO

Binäres Phasendiagramm Al₂O₃. ZrO₂^[2]

Mikrostruktur:

Typische Lagenstruktur durch Plasmaspritzen Teilweise nicht komplett aufgeschmolzenes Ausgangsmaterial

^{*} Mikrorisse Porosität im unbehandelten

Zustand ca. 12% Porosität verringert sich

durch thermische Behandlung auf ca. 8%; Dichte steig

[~] Korngrößen von <100nm auch noch nach thermischer Behandlung

a) YSZ20A, b) YSZ20A TT, c) Z60A und d) Z60A TT

TEM + EDX line scan Z60A Ergebnisse der Röntgenbeugung an freistehenden Materialien unaufgeschmolzenes Anfangsmaterial

Bildung von metastabilen Phasen durch das quenchen mit flüssigem N2: YSZ . 20 Al₂O3:

60

M% ZrO

Stabilisierung der kubischen ZrO₂ Phase durch Al³⁺

Al₂O₃

<u>ZrO₂ . 60 Al₂O₃:</u> Lösung von Zr4+ in Al₂O₃

Bildung von stabilen Phasen durch thermische Behandlung

YSZ . 20 Al2O3:

c-ZrO₂:(Y³⁺, Al³⁺) $\xrightarrow{1h/1400^{\circ}C}$ t-ZrO₂:Y³⁺ + Y₂O₃ + α -Al₂O₃ Bildung von Al₂O₃ Ausscheidungen in ZrO₂ Matrix

ZrO2 . 60 Al2O3: γ -Al₂O₃:Zr⁴⁺ $\xrightarrow{1h/1400^{\circ}C} \alpha$ -Al₂O₃ + ZrO₂

Bildung von ZrO₂ Ausscheidungen in Al₂O₃ Matrix

Biegeverhalten:

daraus die Bestimmung der Spannungs-Dehnungsdiagramme:

a b - As received - Thermal treated MPa] MPal 0,10 0,12 0,14 0,16 0,18 0,20 0,22 Strain [%] Spannungs-Dehnungsverhalten unter Biegebeanspruchung für a) YSZ20A und b) Z60A

Miniatur 3-Punkt Biegeversuche erlauben die simultane Aufnahme von Last und Dehnung und

Nicht-lineares σ-ε-Verhalten durch den losen Zusammenhalt der lamellenartigen Mikrostruktur^{[3}

Thermische Behandlung führt zur Versteifung dieser Lamelle

Linear-elastisches Verhalten bis zum Bruch

Zusammenfassung der mechanischen Eigenschafte				
Material	σ _f [MPa]	E ₀ [GPa]	(HV0.3) ₀	m
YSZ20A as-rec.	64 ± 4	50 ± 9	709	6
YSZ20A TT	226 ± 16	90 ± 19	926	3
Z60A as-rec.	163 ± 26	150 ± 22	773	11
Z60A TT	156 ± 17	160 ± 41	872	6

Einfluss der thermischen Behandlung auf die mechanischen Eigenschaften:

- Verringerung der Porosität durch Verdichtung
- "Verstärkung der interlamellaren Verbindung
- " Erzeugung von Ausscheidungen in der Matrix
- Erzeugung der thermodynamisch stabilen Phasen

Referenzen:

[1] A. Agarwal, T. McKechnie, S. Seal, J. Thermal Spray Technol. 12 [3] 350-359 (2003) [2] X. Zhou, V. Shukla, R.W. Cannon, B.H. Kear, J. Amer. Ceram. Soc. 86 [8] 1415-1420 (2003) [3] H.J. Kim, Y.G. Kweon, Thin Solid Films, 342 [1-2] 201-206 (1999)

