INFLUENCE OF CHEMISORPTION PRODUCTS OF CARBON DIOXIDE ON RADIOLYSIS OF TRITIUM BREEDING CERAMIC Arturs Zarins¹, Gunta Kizane¹, Regina Knitter², Arnis Supe¹ ¹University of Latvia, Institute of Chemical Physics, 4 blvd. Kronvalda, LV-1010, Riga, Latvia ²Karlsruhe Institute of Technology, Institute for Applied Materials, 76021 Karlsruhe, Germany Lithium orthosilicate pebbles (90mol% Li_4SiO_4 and 10mol% Li_2SiO_3) are internationally approved tritium breeding ceramic for fusion reactors [1]. On the surface of the pebbles tritium accumulates in T^+ form, due to the interaction with radiation defects and products of radiolysis [2]. This effect could be explained by the fact that a radiation unstable Li_2CO_3 phase forms in chemisorbing process of carbon dioxide from air atmosphere [3,4,5]. The aim of the investigation was to estimate the influence of chemisorption products of CO_2 on the radiolysis of Li_4SiO_4 containing ceramic. Lithium orthosilicate powder with relevant composition was selected as investigation material because of the high specific surface area and small grain sizes ($S_{\text{spec.}}=17\pm2~\text{m}^2\cdot\text{g}^{-1}$, $\varnothing_{\text{powd.}}=350\text{-}550~\text{nm}$). The powder was thermally treated ($T_{\text{max}}=300^{\circ}\text{C}$, $t_{\text{max}}=1~\text{h}$, air atmosphere) to accumulate chemisorption products of CO_2 [6], and irradiated with gamma rays (absorbed dose 56 kGy, dose rate 14 kGy·h⁻¹). The composition of the powder was analyzed with powder X-ray diffractometry, Fourier transformation infrared spectroscopy and thermal analysis, the accumulated radiation defects were studied with electron spin resonance spectroscopy. It was established that X-ray amorphous chemisorption products of H₂O and CO₂, mostly LiOH and Li₂CO₃, accumulate on the surface of Li₄SiO₄ powder after thermal treatment in air. Radiation defects of Li₂CO₃ and LiOH are unstable and accumulate only in low amounts. Radiolysis of chemisorption products affects the radiation stability of Li₄SiO₄ powder and increases the concentration of radiation defects of silicates, SiO₄³⁻ and SiO₃³⁻, up to 50%. On the basis of the obtained results it was concluded that a Li₂CO₃ containing layer on the surface of Li₄SiO₄ pebbles can reduce the radiation stability and may cause tritium accumulation. It may be favourable to change the ceramic composition and to replace Li₂SiO₃ as secondary phase by a less reactive and radiation stable phase like Li₂TiO₃ [7]. ## References: - [1] M. Zmitko et al. Journal of Nuclear materials 417 (2011) 678-683. - [2] G. Kizane et al. Journal of Nuclear materials 329-333 (2004) 1287-1290. - [3] M.H.H. Kolb et al. Journal of Nuclear materials 427 (2012) 126-132. - [4] M. Kato et al. Journal of Material Science Letters 21 (2002) 485-487. - [5] A. Zarins et al. Journal of Nuclear Materials 429 (2012) 34-39. - [6] J. Ostiz-Landeros et al. Thermochimica Acta 515 (2011) 73-78. - [7] R. Knitter et al. Journal of Nuclear materials, http://dx.doi.org/10.1016/j.jnucmat.2012.10.034.