Vortrag gehalten auf dem Internationalen Workshop: "Biogeochemistry of submerged agro-ecosystems: Properties, processes, cycles and functions"

Freising, 24.09.2014

Ground cover rice production systems (GCRPS) increase soil carbon and nitrogen stocks and reduce greenhouse gas emissions

Michael Dannenmann¹*, Liu Meiju^{2,1}, Yao Zhisheng³, Lin Shan², Gustavo Saiz¹, Yan Guangxuan^{1,3}, David Pelster⁴, Tao Hongbin², Sebastian Sippel¹, Tao Yue yue², Zhang Yanan², Zheng Xunhua³, Zuo Qiang², Klaus Butterbach-Bahl^{1, 4}

¹Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, 82467, Germany

²College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China

³Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

⁴Livestock Systems and Environment, International Livestock Research Institute, Box 30709-00100, Nairobi, Kenya

*Presenting author: Dr. Michael Dannenmann

Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany, Tel.:+49-8821-183136, email: klaus.butterbach-bahl@kit.edu

Abstract

Rice production is increasingly challenged by irrigation water scarcity. Covering paddy rice soils with films (ground cover rice production system: GCRPS) can significantly reduce the irrigation water demand of rice, overcome temperature limitations at the beginning of the vegetation period and increase grain yields. However, it has been speculated that increased soil aeration and temperature under GCRPS may result in losses of soil organic carbon (C) and nitrogen (N) stocks. Moreover, while CH_4 emissions for GCRPS system have been shown to decrease, greater N₂O emissions may cause such systems to emit more greenhouse gases than conventional paddy rice cultivation (Paddy). Against expectations our study showed the contrary. Based on a pair wise comparison of 49 neighbouring fields in a cultivation region of ca. 5.000 km² in Shiyan County, Hubei Province, PR China, managed using either GCRPS or Paddy cultivation, we demonstrate that the water-saving GCRPS: 1) significantly increased soil organic C and N stocks within 5-20 years following conversion of production systems; 2) decreased mineralization potential for soil organic C; 3) showed lower δ^{15} N in the soils and plant leafs indicating less NH₃ volatilization and 4) increased crop yields significantly. Moreover, we demonstrate that GCRPS also reduced overall GHG emissions (i.e. lower CH₄ emissions were not offset by increased N_2O emissions). Our results suggest that GCRPS is an innovative rice production technique that not only increases yields using less irrigation water, but that it also is environmentally beneficial due to increased soil C and N stocks and reduced net GHG emissions.